Simulating open quantum systems by applying SU(4) to quantum master equations
نویسندگان
چکیده
منابع مشابه
Lecture 15: Open quantum systems: Hamiltonian formulation and master equations
Open quantum systems are ones that are coupled to an environment that we cannot control or observe completely and therefore must average over in our modeling. In the last lecture we saw how to represent open quantum system dynamics in terms of the Kraus representation (also referred to as a CPTP map, or operator sum representation (OSR)). This representation let us write the reduced state of th...
متن کاملQuantum adiabatic Markovian master equations
We develop from first principles Markovian master equations suited for studying the time evolution of a system evolving adiabatically while coupled weakly to a thermal bath. We derive two sets of equations in the adiabatic limit, one using the rotating wave (secular) approximation that results in a master equation in Lindblad form, the other without the rotating wave approximation but not in Li...
متن کاملQuantum master-equation approach to quantum transport through mesoscopic systems
For quantum transport through mesoscopic systems, a quantum master-equation approach is developed in terms of compact expressions for the transport current and the reduced density matrix of the system. The present work is an extension of Gurvitz’s approach for quantum transport and quantum measurement, namely, to finite temperature and arbitrary bias voltage. Our derivation starts from a second...
متن کاملFrom open quantum systems to open quantum maps
In this paper we show that for a class of open quantum systems satisfying a natural dynamical assumption (see §2.2) the study of the resolvent, and hence of scattering, and of resonances, can be reduced, in the semiclassical limit, to the study of open quantum maps, that is of finite dimensional quantizations of canonical relations obtained by truncation of symplectomorphisms derived from the c...
متن کاملFluctuation theorems for quantum master equations.
A quantum fluctuation theorem for a driven quantum subsystem interacting with its environment is derived based solely on the assumption that its reduced density matrix obeys a closed evolution equation--i.e., a quantum master equation (QME). Quantum trajectories and their associated entropy, heat, and work appear naturally by transforming the QME to a time-dependent Liouville space basis that d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2013
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.87.062101